In most of our daily motion tasks, the coordination between limbs is very crucial for successful execution of the tasks. In this paper, coordination among oscillators controlling in Cartesian space is studied to control bipedal walking. In our method, phase adjustment among oscillators is considered as one of the key issues to achieve coordination. A new phase adjustment method is proposed. With this method, an oscillator is able to coordinate other oscillators and maintain a desired phase relationship. This property is important for the walking control especially when external perturbations are given. To simplify the relationship between oscillators in a central pattern generator (CPG), a hierarchical CPG structure is adopted, where a main oscillator will be used to adjust other oscillators. In the simulation, the walking motion controlled by the CPG controller converges to a stable pattern even with external perturbations. We have implemented the controller in both the simulation model and real hardware robot.