This paper deals with the optimal shape/topological design of plate/shell like structures subjected to a harmonic, periodic excitation using an improved Homogenization Based Optimization Algorithm (HBOA), proposed by Cheng et al., [7]. The major goal of this work is to improve or control the frequency response of structures via the optimal distribution of a given amount of material in a fixed design space. Based upon the improved HBOA, two types of frequency response optimization problems are extensively explored: (1) structures subjected to a periodic excitation with a single excitation frequency, (2) structures subjected to a periodic excitation with excitation frequencies in a frequency domain. To this end, the basic mathematical formulation and a solution method are proposed as well as two numerical examples of obtaining the optimum layout of three-dimensional plate/shell structures. An interesting result is reported from the current optimization problems in comparison with static optimization problems.