We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
This chapter presents Wigner’s approach to quantum mechanics, based on the Wigner function in phase space. It explains Wigner–Weyl quantization, which makes it possible to associate functions on phase space to wave functions and operators, and it develops the technology to do quantum mechanics in this formalism. This includes the star product, Moyal evolution,and star-eigenvalue equations. It also develops semiclassical methods in this formulation, and it has a section on Berry’s semiclassical formula for the Wigner function in one-dimensional systems.
Spectrograms are revisited from a Bargmann transform point of view, with the time-frequency plane identified to the complex plane. This permits to establish simple phase-magnitude relationships for the Gaussian STFT and to describe reassignment via a vector field which happens to be the gradient of the associated (log-)spectrogram. This also paves the way to variations such as differential or adjustable reassignment. Within this picture, the whole reassignment process can be described in terms of attractors (maxima), repellers (zeros), and basins of attraction (component domains).
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.