We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, we applied a multi-objective calibration approach to select a group of best performing parameter sets for the Variable Infiltration Capacity (VIC) model in the Boulder Creek Watershed, USA. We specifically applied 16 non-dominated parameter sets to simulate hydrologic variables, including streamflow (Q), evapotranspiration (ET) and soil moisture (SM) in two future phases (Phase 1: 2040–2069; Phase 2: 2070–2099). Relative to the historical period, Q and ET increased, and SM decreased. The magnitude of change was greater in Phase 2 than in Phase 1 for both ET (+19.7 per cent) and SM (-5.4 per cent). We found that the model calibration resultant parameter uncertainty could lead to a reversal of the change sign of annual Q during Phase 2. The uncertainty resulting from model calibration was up to 4.3 per cent and 19.6 per cent at the annual and monthly scales, respectively. Seasonally, uncertainty reached the highest levels during the spring snowmelt runoff period between February and May for Q and SM, and during the summer months for ET. These results suggest that the use of a single parameter set may yield substantial bias for hydrological projections, and more efforts should be devoted to constraining the model calibration uncertainty to enable effective water resources decision-making.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.