Results about stationary Poisson hyperplane processes and the induced hyperplane mosaics are extended to the case where, instead of stationarity, it is only assumed that the intensity measure has a (possibly continuous) density with respect to some translation-invariant measure. Intensities and quermass densities, which are constant in the stationary case, are then replaced by functions. In a similar way, the associated zonoid (Matheron's
Steiner convex set) is generalized.