We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this study, the radiation contamination dose (RCD) for different combinations of electron energy/distance, applicator and radius around the light intraoperative accelerator (LIAC), a high dose per pulse dedicated intraoperative electron radiotherapy machine, has been estimated. Being aware about the amount of RCDs is highly recommended for linear medical electron accelerators.
Methods and methods:
Monte Carlo Nuclear Particles (MCNP) code was used to simulate the LIAC® head and calculate RCDs. Experimental RCDs measurements were also done by Advanced Markus chamber inside a MP3-XS water phantom. Relative differences of simulations and measurements were calculated.
Result:
RCD reduction by distance from the machine follows the inverse-square law, as expected. The RCD was decreased by increasing angle from applicator walls opposed to the electron beam direction. The maximum differences between the simulation and measurement results were lower than 3%.
Conclusions:
The RCD is strongly dependent on electron beam energy, applicator size and distance from the accelerator head. Agreement between the MCNP results and ionometric dosimetry confirms the applicability of this simulation code in modelling the intraoperative electron beam and obtaining the dosimetric parameters. The RCD is a parameter that would restrict working with LIAC in an unshielded operative room.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.