In this work we discuss the turbulent evolution of molecular clouds and the formation of dense structures within. Typically, the clumps evolution occurs apart from the secular evolution of the turbulent mother cloud due to its high density and large inertia. Despite of current theoretical assumptions we show, by means of numerical simulations, that the clump lifetimes are greater than previously thought by more than an order of magnitude. The presence of dense and long-lived clumps modifies the spectral line profiles of clouds, which are strongly related to the determination of Larson's relations. We address the main modifications of these if a realistic distribution of dense structures is taken into account.