Due to the increasing popularity of surveillance and security systems, the problem of automatically tracking a moving target by visual servoing has become a research topic deserving more investigation. Nonetheless, the success of tracking a moving target in real-time primarily depends on the performance of the motion detection techniques
employed. This paper addresses visual tracking control of an unknown target that could be motional arbitrarily in the scene. A pan-tilt mechanism is used to gain the flexibility of tracking, and the so-called region-based matching method and motion energy method are modified and proposed in this study to detect a moving target based on the consecutive images acquired. A visual servo control scheme that adopts proportional control in the visual
loop for reducing the servo lagging is proposed using output disturbance feedforward compensation. Experimental results show the superiority of the proposed method in achieving high system bandwidth and tracking accuracy.