We consider long-run averages of additive functionals on infinite discrete-state Markov chains, either continuous or discrete in time. Special cases include long-run average costs or rewards, stationary moments of the components of ergodic multi-dimensional Markov chains, queueing network performance measures, and many others. By exploiting Foster-Lyapunov-type criteria involving drift conditions for the finiteness of long-run averages we determine suitable finite subsets of the state space such that the truncation error is bounded. Illustrative examples demonstrate the application of this method.