This work presents a novel trajectory tracking, hovering, and yaw motion control for quadrotors subject to unknown modeling uncertainties and disturbances. Nonlinear equations of motion are used to model the quadrotor's motion without any simplifying assumptions. An integral backstepping control is developed by defining the tracking errors, their integral, and their first through third time derivatives as the system states. The resulting surge force and roll and pitch moments are shown to asymptotically stabilize the error states subject to bounded disturbances and modeling uncertainties. Similarly, a yaw moment is derived through integral backstepping that simultaneously stabilizes yaw motion errors. The controller performance in simultaneous trajectory and yaw motion tracking is verified through both simulations and experiments.