This paper proposes a simplified algorithm for reducing the computational load of the conventional underwater integrated navigation system. The system usually comprises a three-dimensional accelerometer, a three-dimensional gyroscope, a three-dimensional Doppler Velocity Log (DVL) and a data fusion algorithm, such as a Kalman Filter (KF). Since the expected variations of roll, pitch and depth are small, these quantities are assumed to be constant, and the proposed system is designed in a two-dimensional form. Due to the low speed of the vehicle, the nonlinear dynamic equation of the velocity can be simplified in a linear form. We also simplify the conventional KF in order to avoid matrix multiplications and matrix inversions. The performance of the designed system is evaluated in a sea trial by an Autonomous Underwater Vehicle (AUV). The results show that the proposed system can significantly reduce the computational load of the conventional integrated navigation system without a significant reduction in position and velocity accuracy.