We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Current approaches to food volume estimation require the person to carry a fiducial marker (e.g. a checkerboard card), to be placed next to the food before taking a picture. This procedure is inconvenient and post-processing of the food picture is time-consuming and sometimes inaccurate. These problems keep people from using the smartphone for self-administered dietary assessment. The current bioengineering study presents a novel smartphone-based imaging approach to table-side estimation of food volume which overcomes current limitations.
Design
We present a new method for food volume estimation without a fiducial marker. Our mathematical model indicates that, using a special picture-taking strategy, the smartphone-based imaging system can be calibrated adequately if the physical length of the smartphone and the output of the motion sensor within the device are known. We also present and test a new virtual reality method for food volume estimation using the International Food Unit™ and a training process for error control.
Results
Our pilot study, with sixty-nine participants and fifteen foods, indicates that the fiducial-marker-free approach is valid and that the training improves estimation accuracy significantly (P<0·05) for all but one food (egg, P>0·05).
Conclusions
Elimination of a fiducial marker and application of virtual reality, the International Food Unit™ and an automated training allowed quick food volume estimation and control of the estimation error. The estimated volume could be used to search a nutrient database and determine energy and nutrients in the diet.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.