High resolution imaging by transmission electron microscopy has revealed a mechanism for the weathering of intermediate microcline in a humid, temperate climate. Dissolution of the feldspar begins at the boundary of twinned and untwinned domains and produces circular holes which enlarge to form negative crystals. Amorphous, ring-shaped structures develop, about 25 Å in diameter, within the larger holes. These rings, in turn, crystallize to an arcuate phase having a 10-Å basal spacing and then to crinkled sheets of illite or dehydrated montmorillonite. The 10-Å layer silicate shows an irregular stacking sequence, including 10-,-20-, and 30-Å sequences. Included plagioclase crystals show a similar mechanism of weathering and, moreover, are more intensely weathered.