We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The late nineteenth-century Wilson cloud chamber experiments found that the presence of ions caused water vapor to nucleate at lower saturation ratios than in air free of ions. The classical theory of ion-induced nucleation is based on the Thomson model of an ionic droplet, in which an ionic core is surrounded by liquid of the condensing substance. A potential difference exists between the ionic core and the droplet surface, which introduces an electric work term into the Gibbs free energy of cluster formation. This term leads to the existence of stable prenuclei that are smaller than the critical size clusters and more abundant, at steady state, than the bare ions. With assumptions otherwise the same as in CNT for neutral self-nucleation, an expression can be derived for the steady-state rate of ion-induced nucleation. Deficiencies of this theory, in addition to those of CNT for neutral self-nucleation, include that it neglects the effect of the ion on condensation rate constants. Moreover, the theory predicts that the sign of the ion makes no difference in the nucleation rate, in contradiction to the results of most experimental studies for various substances.
Gas-phase nucleation of condensed-phase particles is important in many contexts, including interstellar dust formation, air pollution, global climate change, combustion and fires, semiconductor processing, and synthesis of nanoparticles for practical applications. Nucleation occurs via the growth of atomic or molecular clusters to “critical size” – the size where further growth is irreversible. These critical-size clusters are the nuclei for particle formation, and the growth of clusters to the size of nuclei is the concern of nucleation theory. Various scenarios occur, including single-component homogeneous nucleation from a supersaturated vapor, multicomponent nucleation, ion-induced nucleation, chemical nucleation, and nucleation in plasmas. Classical nucleation theory, which treats small clusters as having the same properties as the bulk condensed phase, is still widely used to estimate nucleation rates for many kinds of systems. However, it is anticipated that atomistic approaches based on computational chemistry will increasingly be used to facilitate more accurate predictions of gas-phase nucleation rates for substances and chemical systems of interest.
Formation of small solid and liquid particles is vital for a variety of natural and technological phenomena, from the evolution of the universe, through atmospheric air pollution and global climate change. Despite its importance, nucleation is still not well understood, and this unique book addresses that need. It develops the theory of nucleation from first principles in a comprehensive and clear way, and uniquely brings together classical theory with contemporary atomistic approaches. Important real-world situations are considered, and insight is given into cases typically not considered such as particle formation in flames and plasmas. Written by an author with more than 35 years of experience in the field, this will be an invaluable reference for senior undergraduates and graduate students in a number of disciplines, as well as for researchers in fields ranging from climate science and astrophysics to design of systems for semiconductor processing and materials synthesis.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.