We state certain product formulae for Jackson integrals associated with irreducible reduced root systems. The Jackson integral is defined here as a sum over any full-rank sublattice of the coweight lattice for the root system. In particular, a Weyl group symmetry classification of the Jackson integrals is done when they have an expression of a product of the Jacobi elliptic theta functions. Most of the product formulae investigated by Aomoto, Macdonald and Gustafson appear in the list of classifications. A new product formula for an F4 root system is included in it.