We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We propose a non-traditional finite element method with non-body-fitting grids to solve the matrix coefficient elliptic equations with imperfect contact in two dimensions, which has not been well-studied in the literature. Numerical experiments demonstrated the effectiveness of our method.
In this paper, we propose a numerical method for solving the heat equations with
interfaces. This method uses the non-traditional finite element method together
with finite difference method to get solutions with second-order accuracy. It is
capable of dealing with matrix coefficient involving time, and the interfaces
under consideration are sharp-edged interfaces instead of smooth interfaces.
Modified Euler Method is employed to ensure the accuracy in time. More than
1.5th order accuracy is observed for solution with singularity (second
derivative blows up) on the sharp-edged interface corner. Extensive numerical
experiments illustrate the feasibility of the method.
Solving elasticity equations with interfaces is a challenging problem for most existing methods. Nonetheless, it has wide applications in engineering and science. An accurate and efficient method is desired. In this paper, an efficient non-traditional finite element method with non-body-fitting grids is proposed to solve elasticity equations with interfaces. The main idea is to choose the test function basis to be the standard finite element basis independent of the interface and to choose the solution basis to be piecewise linear satisfying the jump conditions across the interface. The resulting linear system of equations is shown to be positive definite under certain assumptions. Numerical experiments show that this method is second order accurate in the L∞ norm for piecewise smooth solutions. More than 1.5th order accuracy is observed for solution with singularity (second derivative blows up) on the sharp-edged interface corner.
Solving elasticity equations with interfaces is a challenging problem for most existing methods. Nonetheless, it has wide applications in engineering and science. An accurate and efficient method is desired. In this paper, an efficient non-traditional finite element method with non-body-fitting grids is proposed to solve elasticity equations with interfaces. The main idea is to choose the test function basis to be the standard finite element basis independent of the interface and to choose the solution basis to be piecewise linear satisfying the jump conditions across the interface. The resulting linear system of equations is shown to be positive definite under certain assumptions. Numerical experiments show that this method is second order accurate in the L∞ norm for piecewise smooth solutions. More than 1.5th order accuracy is observed for solution with singularity (second derivative blows up) on the sharp-edged interface corner.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.