The manipulation in singular regions promotes an instantaneous reduction in mechanism mobility, which can result in some disturbances in the trajectory tracking. The application of the quaternionic elements for motion representation not only guarantees an orthonormal transformation but also results in the smallest variance and minimizes the acceleration peaks. The use of a unit quaternion avoids these phenomena, but there are dimensional limitations that make it impossible to translate the representation. This work presents a methodology for using dual quaternions in the analysis of robot kinematics using the Davies method, which avoids kinematic singularities and ensures the optimal torque profiles.