Kirkendall void formation at the solder/metallization interface is an important reliability concern for Cu conductors and under-bump metallization in microelectronic packaging industry, whose mechanism is still hard to be understood for different individual cases. In the present work, two typical solder/Cu-diffusing couples, eutectic SnIn/Cu and SnBi/Cu, were studied by scanning/transmission electron microscopy to investigate the microstructural evolution and voiding process after soldering and then solid-state aging. It was concluded that Kirkendall voids formed between two sublayers within Cu2(In,Sn) phase in eutectic SnIn/Cu solder joint, whereas they appeared at the Cu3Sn/Cu interface or within Cu3Sn for eutectic SnBi/Cu solder joint. Besides the effect of impurity elements, the morphological difference within one intermetallic compound layer could change the diffusing rates of reactive species, hence resulting in void formation in the reaction zone.