We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Bochvar algebras consist of the quasivariety $\mathsf {BCA}$ playing the role of equivalent algebraic semantics for Bochvar (external) logic, a logical formalism introduced by Bochvar [4] in the realm of (weak) Kleene logics. In this paper, we provide an algebraic investigation of the structure of Bochvar algebras. In particular, we prove a representation theorem based on Płonka sums and investigate the lattice of subquasivarieties, showing that Bochvar (external) logic has only one proper extension (apart from classical logic), algebraized by the subquasivariety $\mathsf {NBCA}$ of $\mathsf {BCA}$. Furthermore, we address the problem of (passive) structural completeness ((P)SC) for each of them, showing that $\mathsf {NBCA}$ is SC, while $\mathsf {BCA}$ is not even PSC. Finally, we prove that both $\mathsf {BCA}$ and $\mathsf {NBCA}$ enjoy the amalgamation property (AP).
We study the lattice of extensions of four-valued Belnap–Dunn logic, called super-Belnap logics by analogy with superintuitionistic logics. We describe the global structure of this lattice by splitting it into several subintervals, and prove some new completeness theorems for super-Belnap logics. The crucial technical tool for this purpose will be the so-called antiaxiomatic (or explosive) part operator. The antiaxiomatic (or explosive) extensions of Belnap–Dunn logic turn out to be of particular interest owing to their connection to graph theory: the lattice of finitary antiaxiomatic extensions of Belnap–Dunn logic is isomorphic to the lattice of upsets in the homomorphism order on finite graphs (with loops allowed). In particular, there is a continuum of finitary super-Belnap logics. Moreover, a non-finitary super-Belnap logic can be constructed with the help of this isomorphism. As algebraic corollaries we obtain the existence of a continuum of antivarieties of De Morgan algebras and the existence of a prevariety of De Morgan algebras which is not a quasivariety.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.