Several neural networks have been proposed in the general literature for pattern recognition and clustering, but little empirical comparison with traditional methods has been done. The results reported here compare neural networks using Kohonen learning with a traditional clustering method (K-means) in an experimental design using simulated data with known cluster solutions. Two types of neural networks were examined, both of which used unsupervised learning to perform the clustering. One used Kohonen learning with a conscience and the other used Kohonen learning without a conscience mechanism. The performance of these nets was examined with respect to changes in the number of attributes, the number of clusters, and the amount of error in the data. Generally, the K-means procedure had fewer points misclassified while the classification accuracy of neural networks worsened as the number of clusters in the data increased from two to five.