Using the theory of pseudo maximum likelihood estimation the asymptotic covariance matrix of maximum likelihood estimates for mean and covariance structure models is given for the case where the variables are not multivariate normal. This asymptotic covariance matrix is consistently estimated without the computation of the empirical fourth order moment matrix. Using quasi-maximum likelihood theory a Hausman misspecification test is developed. This test is sensitive to misspecification caused by errors that are correlated with the independent variables. This misspecification cannot be detected by the test statistics currently used in covariance structure analysis.