Given two Lie 2-groups, we study the problem of integrating a weak morphism between the corresponding Lie 2-algebras to a weak morphism between the Lie 2-groups. To do so, we develop a theory of butterflies for 2-term L∞-algebras. In particular, we obtain a new description of the bicategory of 2-term L∞-algebras. An interesting observation here is that the role played by 1-connected Lie groups in Lie theory is now played by 2-connected Lie 2-groups. Using butterflies, we also give a functorial construction of 2-connected covers of Lie 2 -groups. Based on our results, we expect that a similar pattern generalizes to Lie n-groups and Lie n-algebras.