The Japanese Quasi-Zenith Satellite System (QZSS) is a regional satellite navigation system capable of transmitting navigation signals that are compatible and interoperable with other Global Navigation Satellite Systems (GNSS). In addition to navigation signals, QZSS also transmits augmentation signals, e.g. the L-band Experimental (LEX) signal. The LEX signal is unique for QZSS in delivering correction messages such as orbits and clock information that enable real-time Precise Point Positioning (PPP). This study aims to evaluate the availability of the LEX signal as well as the quality of the broadcast correction messages for real-time PPP applications. The system is tested in both static and kinematic positioning modes. The results show that the availability of the LEX signal is 60% when the QZSS satellite elevation is at 30° and above 90% when the satellite is above 40° elevation. Centimetre-level position accuracy can be obtained for static PPP processing after two hours of convergence using the current MADOCA-LEX (Multi-GNSS Advanced Demonstration of Orbit and Clock Analysis) correction messages transmitted on the LEX signal; and decimetre-level point positioning accuracy can be obtained for kinematic PPP processing.