Valsassina (Lombardy, Northern Italy) is located in the Lombard Southern Alps and is characterised by the presence of a metamorphic basement, by a major late Variscan intrusive complex and by Carboniferous–Permian volcano-sedimentary cover units. These rocks host a pervasive system of inadequately studied mineralised veins. These veins are characterised by base metal (Pb, Zn, Cu and Fe) and complex polymetallic assemblages.
In this study, we have investigated the ore textures, mineral compositions of sulfides and sulfosalts (by EMPA–WDS and LA–ICP–MS analyses), and stable isotopes (C and O) in carbonate gangue minerals of various mineralised veins to determine the conditions of deposition of these ore deposits. Two different vein families can be recognised in Valsassina: NNW–SSE veins characterised by a complex polymetallic sulfide–sulfosalt assemblage, also with Ni–Co–Fe arsenides and other Ag–Bi-bearing minerals; and NE–SW veins with a simpler, base metal sulfide assemblage. The Ni–Co-bearing NNW–SSE veins have some distinctive features of the ‘five-element vein’ type deposits, with the Ni–Co–Fe arsenide ore stage pre-dating a sulfide-tetrahedrite-dominated ore stage. LA–ICP–MS data for pyrite and sphalerite, and stable isotopic compositions (C and O) of the carbonate gangue minerals, show no clear differences between the two families of veins, which are probably linked genetically. The isotopic compositions of the Valsassina vein carbonates are closely comparable with the signature of several major five-element ore districts. Preliminary temperature estimates for the Valsassina vein systems were based on the sphalerite composition, applying the GGIMFis geothermometer. The estimated temperatures for the sulfide-dominated ore stage post-dating the Ni–Co minerals precipitation range between 100 and 250°C. The crosscutting relationships, observed for all the veins with the host rocks, suggest a possible late to post Variscan (late Permian) age, making these vein systems comparable with other late–post Variscan polyphase hydrothermal events affecting large sectors of the Southern Alpine domain.