An asymptotic theory of estimation is developed for classes of spatial series F(x1, · ··, xn), where (x1, · ··, xn) varies over a regular cartesian lattice. Two classes of unilateral models are studied, namely half-space models and causal (quadrant-type) models. It is shown that a number of asymptotic results are common for these models. Of special interest for practical applications is the problem of determining how many parameters should be included to describe the degree of dependence in each direction. Here we are able to obtain weakly consistent generalizations of familiar time-series criteria under the assumption that the generating variables of the model are independently and identically distributed. For causal models we introduce the concepts of spatial innovation process and lattice martingale and use these to extend some of the asymptotic theory to the case where a certain type of dependence is permitted in the generating variables.