We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Exponential bounds are derived for the tail probabilities of various compound distributions, generalizing the classical Lundberg inequality of insurance risk theory. Failure rate properties of the compounding distribution including log-convexity and log-concavity are considered in some detail. Mixed Poisson compounding distributions are also considered. A ruin theoretic generalization of the Lundberg inequality is obtained in the case where the number of claims process is a mixed Poisson process. An application to the M/G/1 queue length distribution is given.
Analogues of some theorems of Brown (1980) concerning renewal measures with DFR or IMRL underlying distributions are proved for delayed renewal measures. Some related results, such as partial converses of the main theorems, are also presented.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.