Consider a Lamperti–Kiu Markov additive process $(J, \xi)$ on $\{+, -\}\times\mathbb R\cup \{-\infty\}$, where J is the modulating Markov chain component. First we study the finiteness of the exponential functional and then consider its moments and tail asymptotics under Cramér’s condition. In the strong subexponential case we determine the subexponential tails of the exponential functional under some further assumptions.