We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Partial differential equations (PDE) on manifolds arise in many areas, including mathematics and many applied fields. Due to the complicated geometrical structure of the manifold, it is difficult to get efficient numerical method to solve PDE on manifold. In the paper, we propose a method called point integral method (PIM) to solve the Poisson-type equations from point clouds. Among different kinds of PDEs, the Poisson-type equations including the standard Poisson equation and the related eigenproblem of the Laplace-Beltrami operator are one of the most important. In PIM, the key idea is to derive the integral equations which approximates the Poisson-type equations and contains no derivatives but only the values of the unknown function. This feature makes the integral equation easy to be discretized from point cloud. In the paper, we explain the derivation of the integral equations, describe the point integral method and its implementation, and present the numerical experiments to demonstrate the convergence of PIM.
In this paper, we explore the use of the diffusion geometry framework for the fusion of geometric and photometric information in local and global shape descriptors. Our construction is based on the definition of a diffusion process on the shape manifold embedded into a high-dimensional space where the embedding coordinates represent the photometric information. Experimental results show that such data fusion is useful in coping with different challenges of shape analysis where pure geometric and pure photometric methods fail.
In this paper, a lower bound is established for the local energy of partial sum of eigenfunctions for Laplace-Beltrami operators (in Riemannian manifolds with low regularity data) with general boundary condition. This result is a consequence of a new pointwise and weighted estimate for Laplace-Beltrami operators, a construction of some nonnegative function with arbitrary given critical point location in the manifold, and also two interpolation results for solutions of elliptic equations with lateral Robin boundary conditions.
Let $\varGamma =\varGamma _{\tau ,z}$ be one of the $N^2$-dimensional bicovariant first order differential calculi for the quantum groups $\mathrm{GL}_q(N)$, $\mathrm{SL}_q(N)$, $\mathrm{SO}_q(N)$, or $\mathrm{Sp}_q(N)$, where $q$ is a transcendental complex number and $z$ is a regular parameter. It is shown that the de Rham cohomology of Woronowicz' external algebra $\varGamma^\land $ coincides with the de Rham cohomologies of its left-coinvariant, its right-coinvariant and its (two-sided) coinvariant subcomplexes. In the cases $\mathrm{GL}_q(N)$ and $\mathrm{SL}_q(N)$ the cohomology ring is isomorphic to the coinvariant external algebra $\varGamma ^\land _{\scriptscriptstyle{\mathrm{Inv}}}$ and to the vector space of harmonic forms. We prove a Hodge decomposition theorem in these cases. The main technical tool is the spectral decomposition of the quantum Laplace-Beltrami operator. 2000 Mathematical Subject Classification: 46L87, 58A12, 81R50.
We obtain an explicit formula for heat kernels of Lorentz cones, a family of classical symmetric cones. By this formula, the heat kernel of a Lorentz cone is expressed by a function of time $t$ and two eigenvalues of an element in the cone. We obtain also upper and lower bounds for the heat kernels of Lorentz cones.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.