Interactions of sub-nanosecond pulses of kJ-class iodine laser
“PALS” with low-density foams and acceleration of Al foils by
the pressure of the heated foam matter are investigated here, both
experimentally and theoretically. X-ray streak camera is used for
evaluation of the speed of energy transfer through the porous foam
material. The shock-wave arrival on the rear side of the target is
monitored by optical streak camera. Accelerated foil velocities, measured
by three-frame optical interferometers, and shadowgraphs, reach up to
107 cm/s. The accelerated foil shape is smooth without any
signature of small-scale structures present in the incident laser beam.
Conversion efficiencies as high as 14% of the laser energy into the
kinetic energy of Al foil are derived. Experimental results compare well
with our two-dimensional hydrodynamics simulations and with an approximate
analytical model.