We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We introduce the concept of ‘irrational paths’ for a given subshift and useit to characterize all minimal left ideals in the associated unital subshift algebra. Consequently, we characterize the socle as the sum of the ideals generated by irrational paths. Proceeding, we construct a graph such that the Leavitt path algebra of this graph is graded isomorphic to the socle. This realization allows us to show that the graded structure of the socle serves as an invariant for the conjugacy of Ott–Tomforde–Willis subshifts and for the isometric conjugacy of subshifts constructed with the product topology. Additionally, we establish that the socle of the unital subshift algebra is contained in the socle of the corresponding unital subshift C*-algebra.
The author has previously associated to each commutative ring with unit $R$ and étale groupoid $\mathscr{G}$ with locally compact, Hausdorff and totally disconnected unit space an $R$-algebra $R\,\mathscr{G}$. In this paper we characterize when $R\,\mathscr{G}$ is Noetherian and when it is Artinian. As corollaries, we extend the characterization of Abrams, Aranda Pino and Siles Molina of finite-dimensional and of Noetherian Leavitt path algebras over a field to arbitrary commutative coefficient rings and we recover the characterization of Okniński of Noetherian inverse semigroup algebras and of Zelmanov of Artinian inverse semigroup algebras.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.