We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In view of the fact that height differences between socio-economic groups are apparent early in childhood, it is of interest to examine whether skeletal growth is reflective of the social class gradient in CVD risk. The present study examined blood pressure levels, adiposity and growth of adolescent boys from high and low social classes.
Design
In a cross-sectional study, skeletal growth (height and sitting height), adiposity (weight, BMI and body fat) and blood pressure levels of the adolescents were measured.
Setting
Pune, India.
Subjects
Adolescent schoolboys (9–16 years) from high socio-economic (HSE; n 1146) and low socio-economic (LSE; n 932) class.
Results
LSE boys were thin, short and undernourished (mean BMI: 15·5 kg/m2v. 19·3 kg/m2 in HSE boys, P = 0·00). Social gradient was revealed in differing health risks. The prevalence of high systolic blood pressure (HSBP) was high in HSE class (10·5 % v. 2·7 % in LSE class, P = 0·00) and was associated with adiposity, while the prevalence of high diastolic blood pressure (HDBP) was high in LSE class (9·8 % v. 7·0 % in HSE class, P = 0·00) and had only a weak association with adiposity. Despite this, lower ratio of leg length to height was associated with significantly higher respective health risks, i.e. for HDBP in LSE class (OR = 1·99, 95 % CI 1·14, 3·47) and for HSBP in HSE class (OR = 1·69, 95 % CI 1·02, 2·77).
Conclusions
As stunting in childhood is a major problem in India and Asia, the leg length to height indicator needs to be validated in different populations to understand CVD risks.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.