We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Edited by
Helen Liapis, Ludwig Maximilian University, Nephrology Center, Munich, Adjunct Professor and Washington University St Louis, Department of Pathology and Immunology, Retired Professor
In general, kidney disease is not a very common feature of mitochondriopathies but tends to be more prevalent in children than adults. Overall, the spectrum of kidney disease in a context of multi-organ mitochondrial disease is quite variable, and diagnostic assessment with a kidney biopsy is indispensable to establish the diagnosis. Clinically, most mitochondrial diseases with renal manifestation will cause tubular dysfunction, ranging from renal tubular acidosis to overt Fanconi syndrome (aminoaciduria, hyperuricemia and electrolyte imbalances); rarely, proteinuria and nephrotic syndrome can be a sign. Chronic kidney disease and end-stage kidney disease are the usual outcomes. The two most common mitochondrial diseases that also have renal involvement are Leigh syndrome and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome. Notably, CoQ10 deficiency presents with classic FSGS and proteinuria. Other findings include proximal tubulopathy/granular tubular inclusions (large mitochondria found on EM) which clinically correspond to overt De Toni–Debré–Fanconi syndrome.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.