We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Time for a break! Chapter 7 takes you for a guided walk through a tiny part of mathematical wonderland. We will encounter several mathematical personalities. An important one is Andrew Wiles, who solved Fermat’s Last Theorem. The story about how he finally obtained a proof is a must-read. We learn about the Fields Medal, the equivalent of a (non-existing) Nobel Prize in mathematics. We also tell you about the four-yearly International Congresses of Mathematicians and their influence on the field. There will be a first step on the ladder towards a theory of randomness; key names here are Jacob Bernoulli and Andrei Nikolajewitsch Kolmogorov. Randomness also comes to us through the famous discussion between Niels Bohr and Albert Einstein on “God throwing dice”. Of course, we include Leonhard Euler and his most beautiful formula of mathematics.
One of the most counterintuitive examples involving randomness is the birthday problem. From 23 persons onwards, the probability of finding at least two people in a group with the same birthday is above 50%. Leonhard Euler’s solution of the Koenigsberg bridge problem heralded the start of the fascinating field of graphs and networks with applications to numerous applied problems across many disciplines. In 1929 the Hungarian writer Frigyes Karinthy highlighted the world’s smallness through his wonderful story “Chains” where he introduced the by now well-known “separation by six” idiom. Starting from these examples, we discuss some risks due to network effects present on the World Wide Web and social media. We present the reader with a glimpse of the fascinating world of coincidences. For instance, the law of truly large numbers states that, with a large enough sample, any outrageous thing is likely to happen. Real-life examples highlight the meaning of this law.
During the seventeenth century, the advent of what were known as the “common” and “new” analyses fundamentally changed the landscape of European mathematics. The widely accepted narrative is that these analyses, analytic geometry and calculus (mostly due to Descartes and Leibniz, respectively), occasioned a transition from geometrical to symbolic methods. In dealing with the science of motion, mathematicians abandoned the language of proportion theory, as found in the works of Galileo, Huygens, and Newton, and began employing the Newtonian and Leibnizian calculi when differential and fluxional equations first appeared in the 1690s. This was the advent of a more abstract way of practicing mathematics, which culminated with the algebraic approach to calculus and mechanics promoted by Euler and Lagrange in the eighteenth century. In this chapter, it is shown that geometrical interpretations and mechanical constructions still played a crucial role in the methods of Descartes, Leibniz, and their immediate followers. This is revealed by the manner in which they handled equations and how they sought their solutions. The passage from proportions to equations did not occur in a single step; it was a process that took a century to reach completion.
The differential equations as written by Leibniz and by his immediate followers look very similar to the ones in use nowadays. They are familiar to our students of mathematics and physics. Yet, in order to make them fully compatible with the conventions adopted in our textbooks, we have to change just a few symbols. Such “domesticating” renderings, however, generate a remarkable shift in meaning, making those very equations – when so reformulated – not acceptable for their early-modern authors. They would have considered our equations, as we write them, wrong and corrected them back, for they explicitly adopted tasks and criteria different from ours. In this chapter, focusing on a differential equation formulated by Johann Bernoulli in 1710,I evaluate the advantages and risks inherent in these anachronistic renderings.
Two parts of analysis to which Leonhard Euler contributed in the 1740s and 1750s are the calculus of variations and the theory of infinite series. Certain concepts from these subjects occupy a fundamental place in modern analysis, but do not appear in the work of either Euler or his contemporaries. In the case of variational calculus there is the concept of the invariance of the variational equations; in the case of infinite series there is the concept of summability. However, some modern mathematicians have suggested that early forms of these concepts are implicitly present in Euler’s writings. We examine Euler’s work in calculus of variations and infinite series and reflect on this work in relation to modern theories.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.