We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
As mentioned in Chapter 3, to determine the dimension of the space of vacua on a genus-g curve, it suffices to determine it on the projective line with three marked points. To achieve this, a general algebraic framework in the form of a fusion ring of the simple Lie algebra g at level c is introduced in this chapter. It is a finite rank-reduced algebra. We determine its set of characters explicitly by using the combinatorics of the affine Weyl group and the affine analogue of the Borel--Weil--Bott theorem, as well as a Lie algebra cohomology vanishing result of Teleman. Once we have explicitly determined the characters of the fusion ring (as we have), one of the most important results of the book -- the Verlinde dimension formula -- follows easily by using simple representation theory for finite groups.
In this paper we define a p-adic analogue of the Borel regulator for the K-theory of p-adic fields. The van Est isomorphism in the construction of the classical Borel regulator is replaced by the Lazard isomorphism. The main result relates this p-adic regulator to the Bloch–Kato exponential and the Soulé regulator. On the way we give a new description of the Lazard isomorphism for certain formal groups. We also show that the Soulé regulator is induced by continuous and even analytic classes.
Let $A$ be a unital commutative associative algebra over a field of characteristic zero, $\mathfrak{k}$ a Lie algebra, and $\mathfrak{z}$ a vector space, considered as a trivial module of the Lie algebra $\mathfrak{g}:=A\otimes \mathfrak{k}$. In this paper, we give a description of the cohomology space ${{H}^{2}}(\mathfrak{g},\mathfrak{z})$ in terms of easily accessible data associated with $A$ and $\mathfrak{k}$. We also discuss the topological situation, where $A$ and $\mathfrak{k}$ are locally convex algebras.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.