We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A thin set is defined to be an uncountable dense zero-dimensional subset of measure zero and Hausdorff measure zero of an Euclidean space. A fat set is defined to be an uncountable dense path-connected subset of an Euclidean space which has full measure, that is, its complement has measure zero. While there are well-known pathological maps of a set of measure zero, such as the Cantor set, onto an interval, we show that the standard addition on
$\mathbb {R}$
maps a thin set onto a fat set; in fact the fat set is all of
$\mathbb {R}$
. Our argument depends on the theorem of Paul Erdős that every real number is a sum of two Liouville numbers. Our thin set is the set
$\mathcal {L}^{2}$
, where
$\mathcal {L}$
is the set of all Liouville numbers, and the fat set is
$\mathbb {R}$
itself. Finally, it is shown that
$\mathcal {L}$
and
$\mathcal {L}^{2}$
are both homeomorphic to
$\mathbb {P}$
, the space of all irrational numbers.
In 1939, Erdös and Mahler [‘Some arithmetical properties of the convergents of a continued fraction’, J. Lond. Math. Soc. (2)14 (1939), 12–18] studied some arithmetical properties of the convergents of a continued fraction. In particular, they raised a conjecture related to continued fractions and Liouville numbers. In this paper, we shall apply the theory of linear forms in logarithms to obtain a result in the direction of this problem.
Maillet proved that the set of Liouville numbers is preserved under rational functions with rational coefficients. Based on this result, a problem posed by Mahler is to investigate whether there exist entire transcendental functions with this property or not. For large parametrized classes of Liouville numbers, we construct such functions and moreover we show that they can be constructed such that all their derivatives share this property. We use a completely different approach than in a recent paper, where functions with a different invariant subclass of Liouville numbers were constructed (though with no information on derivatives). More generally, we study the image of Liouville numbers under analytic functions, with particular attention to $f(z)=z^{q}$, where $q$ is a rational number.
In this note, we prove that for any ${\it\nu}>0$, there is no lacunary entire function $f(z)\in \mathbb{Q}[[z]]$ such that $f(\mathbb{Q})\subseteq \mathbb{Q}$ and $\text{den}f(p/q)\ll q^{{\it\nu}}$, for all sufficiently large $q$.
In this note we shall prove the existence of an uncountable subset of Liouville numbers (which we call the set of ultra-Liouville numbers) for which there exist uncountably many transcendental analytic functions mapping the subset into itself.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.