We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We work with polynomial three-dimensional rigid differential systems. Using the Lyapunov constants, we obtain lower bounds for the cyclicity of the known rigid centres on their centre manifolds. Moreover, we obtain an example of a quadratic rigid centre from which is possible to bifurcate 13 limit cycles, which is a new lower bound for three-dimensional quadratic systems.
In 1991, Chicone and Jacobs showed the equivalence between the computation of the first-order Taylor developments of the Lyapunov constants and the developments of the first Melnikov function near a non-degenerate monodromic equilibrium point, in the study of limit cycles of small-amplitude bifurcating from a quadratic centre. We show that their proof is also valid for polynomial vector fields of any degree. This equivalence is used to provide a new lower bound for the local cyclicity of degree six polynomial vector fields, so $\mathcal {M}(6) \geq 44$. Moreover, we extend this equivalence to the piecewise polynomial class. Finally, we prove that $\mathcal {M}^{c}_{p}(4) \geq 43$ and $\mathcal {M}^{c}_{p}(5) \geq 65.$
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.