A 9-yr (1990–1998) study was conducted at Woodstock, ON, Canada, to evaluate weed densities, crop yields, and gross returns in a modified no-tillage (no primary tillage) corn–soybean–winter wheat rotation under three weed management treatments: (1) minimum, preplant application of glyphosate followed by mechanical control; (2) integrated weed management (IWM), preplant application of glyphosate followed by band application of preemergence herbicides plus mechanical control; and (3) conventional, preplant application of glyphosate followed by broadcast application of preemergence herbicides in corn and soybean. In wheat the minimum and IWM treatments had no additional weed control measures other than the preplant application of glyphosate, whereas the conventional treatment had a broadcast application of a postemergence herbicide. Weed densities were assessed each year, (except in 1990) once during the growing season in corn and soybean and immediately after crop harvest in wheat. Adjusted gross return was calculated as the gross revenue minus the unique costs for weed control for each of the treatments. Weed densities were greater in the minimum treatment compared with the IWM or conventional treatment in all crops. Weed densities in the IWM and conventional treatments did not differ. There was no apparent “buildup” of weed density with time in the rotation resulting from weed escapes. Hence, these data challenge current thinking that weed densities increase with time if weed escapes are allowed to go to seed. Corn and soybean yields in the IWM and conventional treatments did not differ. However, the minimum treatment had the lowest corn and soybean yields. Winter wheat yield was not affected by the treatments. All weed management treatments provided similar gross returns for each crop and for the rotation. Thus, the minimum treatment consisting of glyphosate applied preplant followed by shallow interrow tillage appeared to be a viable option, especially if practiced in a farming system capable of ensuring adequate timing of cultivation operations.