The asymptotic behaviour of the sequence (𝒞n(ω), wc,n(ω)/n), is studied where 𝒞n(ω) is the class of all cycles c occurring along the trajectory ωof a recurrent strictly stationary Markov chain (ξ n) until time n and wc,n(ω) is the number of occurrences of the cycle c until time n. The previous sequence of sample weighted classes converges almost surely to a class of directed weighted cycles (𝒞∞, ωc) which represents uniquely the chain (ξ n) as a circuit chain, and ω c is given a probabilistic interpretation.