The tail behaviour of the limit of the normalized population size in the simple supercritical branching process, W, is studied. Most of the results concern those cases when a tail of the distribution function of W decays exponentially quickly. In essence, knowledge of the behaviour of transforms can be combined with some ‘large-deviation' theory to get detailed information on the oscillation of the distribution function of W near zero or at infinity. In particular we show how an old result of Harris (1948) on the asymptotics of the moment-generating function of W translates to tail behaviour.