We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
In this paper we investigate the range of validity of Ruelle’s property. First, we show that every finitely generated Fuchsian group has Ruelle’s property. We also prove the existence of an infinitely generated Fuchsian group satisfying Ruelle’s property. Concerning the negative results, we first generalize Astala and Zinsmeister’s results [Mostow rigidity and Fuchsian groups. C. R. Math. Acad. Sci. Paris311 (1990), 301–306; Teichmüller spaces and BMOA. Math. Ann.289 (1991), 613–625] by proving that all convergence-type Fuchsian groups of the first kind fail to have Ruelle’s property. Finally, we give some results about second-kind Fuchsian groups. [-3.2pc]
We study continuous countably (strictly) monotone maps defined on a tame graph, i.e. a special Peano continuum for which the set containing branch points and end points has countable closure. In our investigation we confine ourselves to the countable Markov case. We show a necessary and sufficient condition under which a locally eventually onto, countably Markov map $f$ of a tame graph $G$ is conjugate to a map $g$ of constant slope. In particular, we show that in the case of a Markov map $f$ that corresponds to a recurrent transition matrix, the condition is satisfied for a constant slope $e^{h_{\text{top}}(f)}$, where $h_{\text{top}}(f)$ is the topological entropy of $f$. Moreover, we show that in our class the topological entropy $h_{\text{top}}(f)$ is achievable through horseshoes of the map $f$.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.