We prove a d-dimensional renewal theorem, with an estimate on the rate of convergence, for Markov random walks. This result is applied to a variety of boundary crossing problems for a Markov random walk (Xn,Sn), n ≥0, in which Xn takes values in a general state space and Sn takes values in ℝd. In particular, for the case d = 1, we use this result to derive an asymptotic formula for the variance of the first passage time when Sn exceeds a high threshold b, generalizing Smith's classical formula in the case of i.i.d. positive increments for Sn. For d > 1, we apply this result to derive an asymptotic expansion of the distribution of (XT,ST), where T = inf { n : Sn,1 > b } and Sn,1 denotes the first component of Sn.