We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The main goal of this chapter is the calculation of the noise kernel in de Sitter spacetime, in a de Sitter-invariant vacuum. The geometry of most inflationary models is well approximated by the de Sitter geometry. For this reason, fluctuations around de Sitter and near-de Sitter spacetimes have been extensively studied in the context of inflationary models. Here we study the stress-energy tensor fluctuations of the matter fields described by the noise kernel. We start by reviewing the basic geometric properties of de Sitter spacetime and the invariant bitensors that will be used in this and in later chapters. These tools are employed to write the noise kernel for spacelike separated points in de Sitter-invariant form, and explicit expressions for the case of a free minimally coupled scalar field are derived. Closed results in terms of elementary functions are given for the particular cases of small masses, vanishing mass and large separations. A massless limit discontinuity is found, and is analyzed in some detail. Finally, we discuss the implications of our results for the quantum metric fluctuations around de Sitter spacetime.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.