This paper considers positive recurrent Markov chains where the probability of remaining in the current state is arbitrarily close to 1. Specifically, conditions are given which ensure the non-existence of central limit theorems for ergodic averages of functionals of the chain. The results are motivated by applications for Metropolis–Hastings algorithms which are constructed in terms of a rejection probability (where a rejection involves remaining at the current state). Two examples for commonly used algorithms are given, for the independence sampler and the Metropolis-adjusted Langevin algorithm. The examples are rather specialized, although, in both cases, the problems which arise are typical of problems commonly occurring for the particular algorithm being used.