In this paper, the dynamical behavior and stability of hanging micropipes conveying fluid with pinned-free boundary conditions are investigated. For a pinned-free rigid micropipe, the dynamical system is found to be stable for various flow velocities. Particular emphasis is placed on the effects of flow velocity, mass ratio and gravity on the dynamics and flutter instability of flexible micropipe system with pinned-free boundary conditions. The governing equations for flexible micropipes are discretized using the differential quadrature method (DQM), yielding a generalized eigenvalue problem which is then solved for various flow velocities, mass ratios and gravity parameters. It is shown that, with increasing flow velocity, the flexible micropipe with pinned-free boundary conditions is stable until it becomes unstable via a Hopf bifurcation leading to flutter. The system may lose stability first in the second or third mode, mainly depending on the selected value of mass ratio. The existence of mode exchange between the second and third modes is possible. The gravity parameter of positive values causes additional restoring force and hence enhances the stability of the micropipe system; however, it can generate the complexity of stability diagrams.