We propose a novel and unified sampling scheme, called the accelerated group sequential sampling scheme, which incorporates four different types of sampling scheme: (i) the classic Anscombe–Chow–Robbins purely sequential sampling scheme; (ii) the accelerated sequential sampling scheme; (iii) the relatively new k-at-a-time group sequential sampling scheme; and (iv) the new k-at-a-time accelerated group sequential sampling scheme. The first-order and second-order properties of this unified sequential sampling scheme are fully investigated with two illustrations on minimum risk point estimation for the mean of a normal distribution and on bounded variance point estimation for the location parameter of a negative exponential distribution. We also provide extensive Monte Carlo simulation studies and real data analyses for each illustration.