The large sample distribution of total indirect effects in covariance structure models in well known. Using Monte Carlo methods, this study examines the applicability of the large sample theory to maximum likelihood estimates oftotal indirect effects in sample sizes of 50, 100, 200, 400, and 800. Two models are studied. Model 1 is a recursive model with observable variables and Model 2 is a nonrecursive model with latent variables. For the large sample theory to apply, the results suggest that sample sizes of 200 or more and 400 or more are required for models such as Model 1 and Model 2, respectively.