A multivariate reduced-rank growth curve model is proposed that extends the univariate reducedrank growth curve model to the multivariate case, in which several response variables are measured over multiple time points. The proposed model allows us to investigate the relationships among a number of response variables in a more parsimonious way than the traditional growth curve model. In addition, the method is more flexible than the traditional growth curve model. For example, response variables do not have to be measured at the same time points, nor the same number of time points. It is also possible to apply various kinds of basis function matrices with different ranks across response variables. It is not necessary to specify an entire set of basis functions in advance. Examples are given for illustration.