A transient cumulative process based upon a sequence of possibly infinite lifetimes is defined, and examples of such a process are described. Given a mild condition on the improper lifetime distribution and given that all lifetimes observed by time t are finite, the expected value of this transient process at t is related to the expected value of a cumulative process based upon proper lifetimes. This relationship is exploited to show that the conditional behavior of the transient process is analogous to that of a proper process and, in particular, the transient process is asymptotically normal.