We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Radiotherapy treatment delivery is evaluated by a pre-treatment patient-specific quality assurance (PSQA) procedure to ensure the patient receives an accurate radiation dose. The current PSQA practice by using conventional phantoms requires more set-up time and cost of purchasing the tools. Therefore, this study aimed to investigate the efficiency of an electronic portal imaging device (EPID) of linear accelerator (LINAC) as a PSQA tool for volumetric-modulated arc therapy (VMAT) planning technique for nasopharyngeal carcinoma (NPC) treatment delivery.
Methods:
A NPC VMAT plan on a Rando phantom was performed by following the Radiation Therapy Oncology Group (RTOG) 0615 protocol. The gamma passing rate of the EPID and PSQA phantom (ArcCHECK) were compared among the gamma criteria of 3%/3 mm, 2%/2 mm and 1%/1 mm, respectively.
Results:
Both EPID and ArcCHECK phantom had distinguishable gamma passing rates in 3%/3 mm and 2%/2 mm with a difference of 0·87% and 0·30%, respectively. Meanwhile, the EPID system had a lower gamma passing rate than the ArcCHECK phantom in 1%/1 mm (21·23% difference). Furthermore, the sensitivity of the EPID system was evaluated and had the largest deviation in gamma passing rate from the reference position in gamma criteria of 2%/2 mm (41·14%) compared to the 3%/3 mm (25·45%) and 1%/1 mm (31·78%), discretely. The best fit line of the linear regression model for EPID was steeper than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm, and vice versa in gamma criteria of 1%/1 mm. This indicates that the EPID had a higher sensitivity than the ArcCHECK phantom in 3%/3 mm and 2%/2 mm but less sensitivity in 1%/1 mm.
Conclusions:
The EPID system was efficient in performing the PSQA test of VMAT treatment in HUSM with the gamma criteria of 3%/3 mm and 2%/2 mm.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.