We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure no-reply@cambridge.org
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The opioid epidemic has led to the wide-spread distribution of naloxone to emergency personnel and to the general public. Recommended storage conditions based on prescribing information are between 15°C and 25°C (59°F and 77°F), with excursions permitted between 4°C and 40°C (39°F and 104°F). Actual storage likely varies widely with potential exposures to extreme temperatures outside of these ranges. These potentially prolonged extreme temperatures may alter the volume of naloxone dispensed from the nasal spray device, which could result in suboptimal efficacy.
Study Objective:
The aim of this study was to assess the naloxone volume deployed following nasal spray device storage at extreme temperatures over an extended period of time.
Methods:
Naloxone nasal spray devices were exposed to storage temperatures of −29°C (−20°F), 20°C (68°F), and 71°C (160°F) to simulate extreme temperatures and a control for 10 hours. First, the density was measured under each temperature condition. Following the density calculation part of the experiment, the mass of naloxone dispensed from each nasal spray device at each temperature was captured and used to calculate volume: calculated volume (microliter, µl) = spray mass (mg converted to g)/mean density (g/mL). Measurements and calculations are reported as means with standard deviation and standard error, and a one-way ANOVA was used to evaluate mean dispensed volume differences at different temperatures.
Results:
There was no difference in the mean volume deployed at −29°C (−20°F), 20°C (68°F), and 71°C (160°F), and measurements were 101.44µl (SD = 9.56; SE = 5.52), 99.01µl (SD = 6.31; SE = 3.64), and 108.28µl (SD = 2.04; SE = 1.18), respectively; P value = .289, F-statistic value = 1.535.
Conclusion:
The results of this study suggest that naloxone nasal spray devices will dispense the appropriate volume, even when stored at extreme temperatures outside of the manufacturer’s recommended range.
Topical nasal decongestants are frequently used as part of the medical management of symptoms related to Eustachian tube dysfunction.
Objective
This study aimed to assess the effect of topical xylometazoline hydrochloride sprayed in the anterior part of the nose on Eustachian tube active and passive opening in healthy ears.
Methods
Active and passive Eustachian tube function was assessed in healthy subjects before and after intranasal administration of xylometazoline spray, using tympanometry, video otoscopy, sonotubometry, tubo-tympano-aerodynamic-graphy and tubomanometry.
Results
Resting middle-ear pressures were not significantly different following decongestant application. Eustachian tube opening rate was not significantly different following the intervention, as measured by all function tests used. Sonotubometry data showed a significant increase in the duration of Eustachian tube opening following decongestant application.
Conclusion
There remains little or no evidence that topical nasal decongestants improve Eustachian tube function. Sonotubometry findings do suggest that further investigation with an obstructive Eustachian tube dysfunction patient cohort is warranted.
Intranasal steroid sprays are fundamental in the medical management of inflammatory rhinological conditions. Side effects are common, but these may be related to the method of application rather than the medication itself.
Methods:
A survey was distributed to patients using intranasal steroid sprays at the ENT out-patient clinic at Aberdeen Royal Infirmary over three months. This evaluated the spray technique used, side effects and compliance.
Results:
Of 103 patients, 22 patients (21.4 per cent) reported side effects, including nasal irritation and epistaxis. Of the 20 patients with epistaxis, 80 per cent used an ipsilateral hand technique (p = 0.01). Thirty patients demonstrated poor compliance because of lack of symptom improvement or side effects. Seventy-seven per cent of this group used the ipsilateral hand technique.
Conclusion:
Patients who used their ipsilateral hand to apply the intranasal steroid spray were more likely to develop epistaxis and have poor compliance than those who used other techniques. Patients who struggle with compliance because of side effects should avoid this method of intranasal steroid application.
Azelastine nasal spray is a topical antihistaminic drug for the symptomatic treatment of allergic rhinitis. This study aimed to investigate the effects of azelastine on nasal and nasopharyngeal microflora.
Methods:
Swab samples from 25 patients prescribed azelastine nasal spray monotherapy were collected just before treatment and after 1 month of treatment. After incubation of inoculates, the number of bacteria present in cultures was measured (in colony-forming units per millilitre).
Results:
Evaluation of the number of microflora revealed increased bacterial reproduction after treatment, but this difference was not statistically significant. The use of azelastine nasal spray decreased the reproduction of three potentially pathogenic bacteria; however, it did not affect the reproduction of other potentially pathogenic bacteria.
Conclusion:
The use of azelastine nasal spray for one month did not have a statistically significant effect on the numbers of nasal and nasopharyngeal microflora; it is therefore safe from a microbiological viewpoint.
Intranasal steroids are the first line of treatment for chronic rhinosinusitis. Although contamination of adjunctive devices (e.g. irrigation bottles) has been much investigated, little is known about nasal contamination of the metered-dose spray bottles used to deliver intranasal steroids, and the potential influence on disease chronicity.
Methods:
Twenty-five prospectively recruited patients with stable chronic rhinosinusitis underwent microbiological analysis of their nasal vestibule and middle meatus and also of their steroid bottle tip and contents. Additionally, bottle tips were inoculated in vitro with Staphylococcus aureus and various sterilisation techniques tested.
Results:
For 18 of the 25 (72 per cent) patients, both nasal and bottle tip swabs grew either Staphylococcus aureus or coagulase-negative staphylococci. Staphylococcus aureus was cultured from 7 of the 25 (28 per cent) patients, and 5 of these 7 had concomitant bacterial growth from both nose and steroid bottle. Thus, the cross-contamination rate was 71 per cent for Staphylococcus aureus infected patients and 20 per cent overall. Sterilisation was effective with boiling water, ethanol wipes and microwaving, but not with cold water or dishwashing liquid.
Conclusion:
Nasal steroid spray bottle tips can become contaminated with sinonasal cavity bacteria. Simple sterilisation methods can eliminate this contamination. Patient education on this matter should be emphasised.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.